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Abstract— Typical Simultaneous localization and map-
ping(SLAM) methods utilize relatively low-level geometric in-
formation like corners, edges, and surfaces. As the advance of
techniques of object detection, it’s more prevalent to use seman-
tic information which contains the landmark classes. While this
information is usually used by a hard data association, which is
independent of the continuous optimization using geometric and
inertial information. This project utilizes semantic information
in a subproblem of optimization as soft data association to
achieve optimal performance. We also move one step forward
with incorporating loop-closure detection by using bag-of-word
method. The project is tested on the KITTI dataset.

I. INTRODUCTION

Simultaneous localization and mapping(SLAM) is a well-
known field in robotics, which aims to estimate the position
of robot and mapping the unknown environment. Traditional
SLAM methods use geometric features like corners[11],
edges[13], and surfaces[10] which can not be interpreted
meaningfully. As the development of methods for object
recognition[17], some recent work extract both metric and
semantic features but consider metric and semantic informa-
tion separately which does not allow confidence of object
recognition to influence the result.

SLAM methods in early age often use filtering which only
considers the most recent pose. And work after that in a long
while has been focusing on the simplification of filtering
method. More recently, nonlinear optimization became the
most important method of SLAM, while this method can be
traced back to [15]. Recent state of art work explored the
sparse linear algebra perspective [Dellaertsq] and iterative
optimization method [12]. While these systems still rely on
linearization of sensing and motion models.

Our project is mainly motivated by the work of Bowman
et al [1]. This work utilizes iterative optimization method
framework, and it utilizes inertial, geometric and semantic
information together in a better way. Semantic, geometric
and inertial information are considered as factors in factor
graph in optimization process. And instead of ignoring the
confidence of object detection, this work considers it as a
discrete optimization sub-problem by computing the weights
for landmarks which are used in pose graph optimization. No
combination of landmark and observation in data association
is discarded by using this method.

In long term and especially large environment SLAM,
loop closure is also important to improve the robustness by
recognizing the previous scene when re-observing the past
scene which is not observed for long . The method of loop
closure in this project is mainly inspired by the work of

Lopez et. al.[6][14], which is based on bag of words and
geometrical check.

In this paper we implement a Semantic SLAM frame-
work tested by KITTI dataset, and the code can be
found on https://github.com/YidongDu/Team-8-final-project.
You could also have access to our project video on
https://youtu.be/ssupiMpUU20. In section II we introduce
our frond end which includes inertial odometry, visual odom-
etry, landmark detector and loop closure. In section III we
break down our back end which is the optimization process.
And in section IV we show and analyse our result.

II. FRONT-END CONSTRUCTION
A. Inertial Odometry

Inertial information is obtained from an inertial mea-
surement unit (IMU) and is used as a constraint between
poses[1]. Between each pose, we pre-integrate batches of
IMU measurements to produce a relative SE(3) transition
matrix, which serves as a factor in GTSAM.

B. Visual Odometry
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Fig. 1. Visual Odometry

C. Landmark Detector

Our project follows the MATLAB Monocular Visual
Odometry tutorial to construct our visual odometry. After
extracting SURF features of the images, we estimate the pose
of the second view by estimatinng the essential matrix and
decomposing it into camera location and orientation. We treat
the GPS data as the ground truth and use the ground truth
data to normalize our visual odometry data.
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Fig. 2.

Then we bootstrap estimating camera trajectory using
global bundle adjustment. We eliminate outliers using the
epipolar constraint. Then we find the 3D-to-2D correspon-
dences between points triangulated from the previous two
views and the current view, computing the world camera
pose for the current view by solving the PnP problem.

At last, we estimate the remaining camera trajectory
using windowed bundle adjustment and we outpt the visual
odometry data as a relative SE(3) transition matrix which
would later be added as factors in GTSAM.

During the construction process, we found the error would
accumulate during the dataset scale increases. Hence, we
slice the image dataset into serveral smaller sub-dataset to
avoid drift.The visualization of one dataset slice is shown as
Figure 1.

The detection of landmarks and its associated semantic
features is broken down into two steps:

1) Object Detection: Departing from the original imple-
mentation of a deformable parts model (DPM) [4],[18],[3]
we train a YOLOv3 [17] object detector network on the
KITTI dataset. YOLO is a single stage object detection
convolutional neural network, which simultaneously predicts
multiple bounding boxes and object class probabilities for
those boxes in a real-time setting.

We train the YOLO network using the KITTI 2D object
detection data [7] for the classes mentioned in Table I. The
trained network returns the pixel centroid of the bounding
boxes, the dimensions of the bounding boxes, the class
name along with the associated class probabilities for the
detected landmarks which forms the basis of the semantic
information.

Class Name
Car
Van
Truck
Pedestrian
Person_sitting
Cyclist
Tram
Misc

TABLE I
CLASS LABELS FOR KITTI DATASET

Bounding Box and Class Scores predicted by YOLOv3 Network

2) Stereo Depth Estimation: The KITTI dataset[8] pro-
vides measurements from a whole suite of sensors such
as IMU, Cameras as well as Velodyne LIDAR for each
keyframe. The LIDAR sensor provides an accurate point
cloud representation of the surrounding location for each
keyframe location. However,the LIDAR representation of
the environment is sparse which requires us to iteratively
search for the nearest set of points associated to a specific
pixel location and approximate the depth at the specific
pixel coordinate.In addition, LIDAR sensors are expensive to
obtain and operate. For our project, we explore the possibility

Fig. 3.

Disparity Map generated by Group-wise Correlation Network

of taking advantage of the stereo camera image data provided
by the dataset [16] for estimating the real world depth at
specific pixel location. We train the Group-wise Correlation
Network (GwCNet) as proposed by Guo et. al.[9]. The
GwCNet takes in input a pair of stereo images and gives
the disparity map as an output. We then sample the disparity
value at the pixel centroid coordinates of the object bounding
boxes obtained from the previous step to calculate the relative
world depth estimate from the camera using Equation (1).

focal length(f) x baseline(b)
disparity

depth = (D
A projective geometry problem can formulated as Equa-

tion (2)between the real-world 3D coordinate X =

(7,y,2,1)T and the pixel coordinates z = (u,v,1)T as:

X = P’rect z (2)
where,
f 0 cu —fub
Prect =10 f Cy 0 (3)



is the rectified projection matrix between the left and right
camera, f is the focal length, ¢, and ¢, are the camera centre
pixel coordinates, and b is the baseline between the cameras.

Solving the Equation (2), provides us with the normalized
3D values, which we scale with the depth to obtain the
relative 3D location of the landmark with respect to the
current camera pose.

D. Loop Closure Detector

We build the loop closure detector based on the work of
Dorian et al, which mainly contains five parts

1) Binary Features: In our project we use FAST features
and BRIEF descriptors. For each FAST keypoint, we draw a
square patch around them and compute a BRIEF descriptor.
The BRIEF descriptor of an image patch is a binary vector
where each bit is the result of an intensity comparison
between two of the pixels of the patch. Given patch size
Sp = 48, we also set the number of test to perform L; = 256.
For a point p in an image, its BRIEF descriptor is constructed
as following:

5w ={ g

where Bi(p) is the i-th bit of the descriptor, I(.) is the
intensity of the pixel in the smoothed image, and a; and b; are
the 2D offset of the i-th test point with respect to the center
of the patch, with value in [—%%] X [—% %}, randomly
selected in advance. We sample a; and b; in the distributions

(a?) ~ N (0, 2 (5)2) and (b)) ~ N ((a;)7, g5 (S0)?)

2) Image Database Construction: [remember to cite Real
Time Loop Detection with Bags of Binary Words] In order
to detect loop closures, we use an image database composed
of a hierarchical bag of words [6]. The bag of words is
a technique that converts a visual vocabulary and a set of
local features into a sparse numerical vector. We build the
visual vocabulary offline, by using k-means++ [6] to cluster
the descriptor space into W words. In hierarchical bag of
words, the vocabulary is structured as a tree. To build the
tree, we first extract descriptors from a set of training images.
k-means is then performed on the descriptors to form k,,
clusters. k-means is recursively performed on the clusters to
form a tree with W leaves, where each leaf’s centroid is
a word of the vocabulary. During training, we weight each
word w; with it’s inverse document frequency (idf)

if I(p+a;) <I(p+b;)

otherwise Vi€ [1.Ls]4)

idf (i) = log™> 5)
T
where [V is the number of training images and n; the number
of occurrences of word w; in the training images.
To create a bag of words vector, v; € R from an image
I, we first extract the set of descriptors. For each descriptor,
we traverse the tree to find the closest word. At each level
of the tree, we select the node with the minimal Hamming
distance from the descriptor, until we reach the closest word.
This allows us to calculate the term frequency (¢f) of each
word in I;:

nir,
nr

tf(i 1) = (6)

t

where n;;, is the number of occurrences of word w; in the
image, and n 7, is the total number of words in the image. The
bag of words vector is constructed such that v} = ¢ f(i, I;) x
idf (i)

3) Database Query: When the last image I; is acquired,
it is converted into the bag-of-words vector v;. The database
is searched for v, resulting in a list of matching candidates
< v, Vg1 >, < Vg, Vg > associated to their similarity scores
s(v,ve5), which is calculated as
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We then normalize these scores with the best score we expect
to obtain in this sequence for the vector vy, obtaining the
normalized similarity score n

s(vg, vy)
S(Ut,vt—At)

n(ve, vej) = (8)
A threshold oo = 0.6 is defined. We then reject those matches
whose 7)(v¢, v¢5) does not achieve the minimum threshold.

4) Match grouping: To prevent images that are close in
time to compete among them when the database is queried,
we group them into islands and treat them as only one match.
Therefore, several matches < vy, Vins >, . . ., < Vg, Upms >
are converted into a single match < v, Vp; > if the gaps
between consecutive timestamps in ¢,,; , . . . , t;,; are small.
The islands are also ranked according to a score H:

myg

H(v,, Vra) = Y v, vij) ©)

Jj=n;

The island with the highest score is selected as matching
group and continue to the temporal consistency step.

5) Geometric Consistency Check: We apply a geometrical
check between any pair of images of a loop closing candi-
date. Since for every image we extract the strongest 128
feature points. We would rule out the candidates from the
matched island which have lass than 12 correspondences.

III. SEMANTIC SLAM

A. Expectation Maximization Formulation and Weights
Computation

A SLAM problem considering the sata association as
a latent variables can be stated as a maximum likelihood
estimation of the sequence of poses X = {x;}I ,, the
landmark positions £ = {l,,}M_,, and the data association
D £ {ay, B}, given the measurements Z £ {z;, } 1 -

X,L,D = arg max log p(Z|X, L, D)
X,L.D

(10)

Instead of using a hard decision on data associations,
here we use a soft data association to utilize the whole
density of D and rewrite the SLAM problem in expectation
maximization (EM) formulation:



X L = argmax]ED [logp(Z|X,L,D)|X", L, Z]

= arg max Z (D|X*, L%, 2) log p(Z| X, L, D)

XL De]D)
—argmaXZZp D|/Y7 L )1ng(zklxak’€5k)
XL peDk=1
K M
—argmaxZZwm log p (zk Xy, ¢ )
XL kZ1j=1

(1D

where D is the space of all possible values of D.

w};j ZDE]D(,W)p (DX, L%, Z) is the weight which
quantifies the influence of soft data association. And
D(k,7) £ {D € D|Bx = j} C D is the set of all possible
data association where measurement k is assigned to land-
mark j.

Because there is no such data association with regard to
the inertial measurements and the data association of the
geometric measurements is provided by the feature tracking
algorithm, we only need to deal with the data association of
the semantic measurements. Suppose p(D|X, L) is uniform
and the semantic measurement data associations are inde-
pendent across keyframes. Then we can divide the semantic
SLAM problem using expectation maximization algorithm
written as Equation (1 1) into two parts: (1) computing data
association weights w . (the “E” step) and (2) solving for
the sensor states (robot poses) X and the landmark positions
lff}\f (the “M” step). These two steps are shown as the
following equations:

wy =3 >

£e€C D, eDy (k,j)

kD (Dy, 0°) Vtk,j (1)

K1) g%(”l) —argmlnz Z Z w )logp(Sk|Xt7 t5)

1M t=1s,€S8; j=1
— log p(G|X) — log p(Z|X)
(13)

where G is geometric information, Z is inertial infor-
mation, DD is the set of all possible data associations for
measurements received at timestep ¢, and D;(7,5) C D is
the set of all possible data associations for measurements
received at time ¢ such that measurement ¢ is assigned to
landmark j.

At sensor pose x;, given the association of semantic mea-
surement s; and landmark [;, the measurement likelihood
can be computed by:

P (sl s) = p (55165,) p (53165, 57) (55 % 5, )
(14)

where sj, is detected class, s, is the detection confidence,
b is the bounding box, p(s§ |I$) corresponds to the confusion

matrix of the object detector, p(sj |5, sf) corresponds to

detection score, and p(52|xt,l§’ ) is assumed normally dis-
tributed with mean equal to the perspective projection of the
centroid of the object onto the image plane and covariance
proportional to the dimensions of the detected bounding box.

Instead of using training data with ground truth label to
get a confusion matrix of our object detection network, we
derived a method to get a pseudo confusion matrix from the
object detection outputs of the data we tested on. Each object
detection output is a landmark detection with the information
of the 2D and 3D position of the landmark, the estimated
class of the landmark, and the class-match score between
each 8 classes and the landmark. If a landmark is claimed
to be of a specific class, then the score between other 7
classes and the landmark can be interpreted as magnitude of
confusion to claim the landmark as another class. In this
sense, for some class j, we add all the score vectors of
landmarks that is claimed to be of class j and then we
normalize the cumulative score vector to get the result vector
where the i —th entry represents the probability of claiming a
landmark with real class j to be of class ¢. Repeat this process
to each class, and then such a pseudo confusion matrix can
be obtained.

B. Pose Graph Construction and Optimization

To solve the optimization problem as Equation (13), here
we use the pose-graph optimization method [2][14] with
the graph having vertex for each sensor state x; and for
each landmark position /! and having three kinds of factors:
semantic factors, geometric factors and inertial factors.
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Visual Odometry measurement
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Fig. 4. Pose Graph Structure

1) Semantic Factors: The semantic measurements s =
(s, 5%, s%) come from the object detection in front-end.
A measurement s from sensor state x; defines factors
fij(x¢,1;) for each visible landmark j. Since [¢ is fixed in
Equation (13), p(s°|l¢) and p(s®|l°, s®) are constant. Thus,
the semantic factors can be expressed as:

£5(X,£) = —wp P log p (shlxi, £7)

15)

2
HSZ —hy (Xt7£j)HRS/wZ,j(i)
where h,(x,1;) is the standard perspective projection of
a landmark [; onto a camera at pose x¢, Ry is the camera
measurement covariance.
At each time step (or sensor state), the Mahalanobis
distance is calculated for each landmark added to the graph



for each semantic measurement obtained from this sensor
state. In the project, we only compute the Mahalanobis
distance for landmarks with a positive relative X coordinate
relative to the camera pose (sensor state). If the lowest
Mahalanobis distance, among all the distance between all
the tested landmarks and a specific semantic measurement,
is not below the set threshold, a new landmark is initialized
in the graph corresponding to this semantic measurement.
Otherwise, new semantic factors will be added between this
sensor state and each tested landmarks corresponding to this
semantic measurement.

Sometimes there will be multiple bounding boxes being
detected from one landmark, resulting in several semantic
measurements with very close 3D position information. To
reduce the influence of this kind of front-end data redun-
dant, if the lowest Mahalanobis distance of two or more
measurements is between them and a same candidate land-
mark, these lowest Mahalanobis distances are compared and
only the measurement with the lowest “lowest Mahalanobis
distances” remained, others being wiped out.

2) Geometric Factors: We have converted geometric point
measurement (SURF) into relative SE(3) transformations be-
tween poses using monocular visual odometry. Now rewrite
the term corresponding to geometric factors in Equation (13)
as

—log p(G|X) = =S 'og p(gi|xe, x¢41) (16)

where g; is relative SE(3) transformations between sensor
state (robot pose) x; and x;4; from visual odometry result.

Thus, the factor constraining the camera poses x; and x4
is

F(x) = |[llog(gy =7 xe+1)]Y ||r, (17)

where (.)" is the transformation from se(3) to R®, and R,
is the SE(3) measurement covariance.

3) Inertial Factors: The accelerometer and gyroscope
measurements are also considered in optimization. By us-
ing method of preintegration, the relative pose differ-
ence(difference in position, velocity and orientation) of two
keyframes can estimated. And this relative pose difference
can be used by residuals expression as a function of poses of
two keyframes provided in [5]. The expression is provided
along with noise covariance

fH(x)

—logp (Z;;]X) 18)

= HrLtj

2
|Ei]‘

The full pose graph optimization corresponding to Equa-
tion (13) is

K M
f{(l:T),EIf:’E\Tl) = arg minz Z T (X, L)
Xl k=1 j=1

T T
+Y )+ )

We solve this within the iSAM?2 framework [12].

19)

IV. RESULT AND ANALYSIS
Our result after running GTSAM is shown as Figure 5.

200 - £ landmarks

Y(m)

-100

=200 -

* L L
-100 0 100 200 300 100

Fig. 5. Trajectory comparison between SLAM output and Ground Truth
The correct loop-closure candidates are selected out and
marked with blue bounding box. From visual effect we
could conclude that the bag-of-word loop closure detection
algorithm works pretty well. However, there are also some
misdetections which are sampled and marked by purple
triangles. The analytical reason behind it might be:

e We did not conduct the temporal consistency check,
which might cause some exceptions exists.

o The tree construction parameter might still need to be
tuned to make the information traversing the tree much
more informative and representative.

We also compare the MSE error without semantic infor-

mation and with semantic information, which is displayed in
Table II.

Semantic Information | MSE error of pose
No 50.125
Yes 35.3392
TABLE II

MSE ERROR COMPARISON

With MSE error decreasing when we incorporate semantic
information, we could manifest the functionality of our
algorithm.

V. FUTURE WORK

Due to the time limit, we only detect the loop closure
pairs in our front end. In the future, we could add projection
factors between loop closure pair nodes and merge them. We
believe this step will further reduce the performance error,
though it might slightly decrease the calculation speed.
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