Manas Jyoti Buragohain

Education	University of MichiganAnn Arbor, MIMaster of Science, RoboticsAug. 2019 - May 2021 (exp• GPA: 3.90/4.00Aug. 2019 - May 2021 (exp	, USA pected)
	Delhi Technological UniversityDelhi,B. Tech., Electronics and Communications EngineeringAug. 2013 - Ma• GPA: 75.13• Communications Engineering	India y 2017
Interests	Computer Vision, Deep Learning, Machine Learning, 3D Reconstruction	
Publications	Fish species classification using graph embedding discriminant analysis Manas Jyoti Buragohain [*] , Snigdhaa Hasija [*] , and S. Indu In CMVIT, 2017.	
Research Experience	Johnson AI Lab, University of MichiganAnn Arbor, MIGraduate Research Assistant Advisor: Justin JohnsonJan 2020 - P	, USA resent
	 3D Object Reconstruction Designed a grid based point cloud prediction network using ResNet-50 backbone. Developed a novel approach for point cloud refinement using local context and attention- based supervision through an augmented Transformer Architecture. Implemented differentiable Top-K selection through Reparameterizable Subset Sampling using CUDA Kernels. 	
	Taubman College of Architecture, University of MichiganAnn Arbor, MichiganResearch/Teaching Assistant Advisor: Matias del CampoAug 2020 - Dec	I, USA e 2020
	 Worked with architecture graduate students (as part of ARCH660) to explore whether the current state of AI can have a novel sensibility of human creativity at large. Implemented various style transfer methods (GAN and VGG based) to empirically explore the hypotheses devised by the students. 	
	Autonomous Underwater Vehicle - Delhi Technological UniversityDelhi,Team Lead & Head, Machine VisionAug 2014 - May	India 7 2017
	 Student Research team involved in exploring applications of marine robotics. Researched and fabricated an Autonomous Underwater Vehicle to capable of operating under varied environmental conditions. Overhauled the core control & navigational software stack for the AUV to coordinate inputs from various sensors - hull mounted cameras, hydrophone array, and AHRS. Deployed multiple computer vision based modules capable of performing real-time image processing applications. Participated in the Singapore Autonomous Underwater Vehicle Challenge 2017, representing India. 	
Technical Skills	 Languages: Python, C, C++, MATLAB, Javascript, HTML/CSS Frameworks: PyTorch, Pytorch3D, OpenCV, CUDA, NumPy, Matplotlib, Caffe Tools: Git, Slurm, Visual Studio, Eclipse, Jupyter 	

PROFESSIONAL Magic Leap. Inc. Sunnyvale, CA, USA EXPERIENCE Software Engineer, Perception Aug 2021 - Present • Implemented a python based 3D object rendering pipeline for generating synthetic data to lower reliance on gathering real world data by 25%. • Designed real time object pose estimation pipeline using RGB and Depth data at 5 FPS with 95% accuracy.

• Conceptualized and deployed communication pipeline for sending sensor and mesh data between AR device and cloud server using Protocol Buffers from GRPC library.

 \bullet Optimized the pipeline's performance by decreasing the latency by 50% through custom data compression and elimination of unnecessary data copy operations freeing up 15% CPU capacity.

• Evaluated and rectified shift sensitivity of predictions from Hand Keypoint prediction network due to input jitter, reducing prediction error 30% to subpixel accuracy.

NXP SemiconductorsNOIDA, IndiaADAS Engineer, Functional ValidationAug. 2017 - Feb. 2019

• Coded C++ programs for Advanced Driver Assistance System (ADAS) system to perform Lane and Pedestrian Detection using SSD architecture optimized for embedded systems.

• Executed continuous testing and integration of Low Light Noise Reduction and Histogram of Gradients Generation modules for accelerating hardware computation on ADAS system.

• Formulated and streamlined C++ unit tests of FlexCAN and LINFlex protocol modules for intra vehicular communication.

RELEVANT Sparse Neural Generative Inference Based Pose Estimation

Projects

EECS 542: Advance Computer Vision Course Project | Instructor: David Fouhey Attempted to build a particle filter based pose estimator where each particle learns latent embedding to infer pose, object likelihood, and re-sampling objective iteratively.

Single Image 3D Reconstruction based on Conditional Generative Adverserial Networks

EECS 504: Computer Vision Course Project | Instructor: Andrew Owens

A conditional GAN framework for generating 3D objects from single RGB image. We achieve improved qualitative 3D reconstructions compared to the Pixel2Mesh baseline.

Probabilistic Data Association for Semantic SLAM with Loop Closure Detection

EECS 568: Mobile Robotics Course Project | Instructor: Maani Ghaffari

Replicate and improve upon the work of Bowman et al with augmentations to object detection framework along with incorporation of loop closure for better offline map generation.

Robot Middle-ware Development

ROB 511: Robot Operating System | Instructor: Chad Jenkins

Developed a web-based dynamic simulator and set-point controller for mobile manipulators like Fetch, Baxter and Sawyer. Implemented motion planners like A^{*}, Bi-directional RRT-connect and RRT^{*} in the simulator for any obstacle environment.

6-DOF Serial Link Robotic Manipulator

ROB 550: Robotic Systems Laboratory Project

Produced a codebase in Python to drive serially connected motors autonomously, employing object detection using a kinect camera suite for pick-n-place operation.

SLAM and Path Planning implementation on MBot

ROB 550: Robotic Systems Laboratory Project

Explored and implemented various mapping, path planning and motion control algorithms on a simulation model for a differential drive robot.

Mobile Inverted Pendulum System

ROB 550: Robotic Systems Laboratory ProjectDesigned a cascaded control architecture to balance a two-wheeled robot and to autonomously
drive in pre-defined trajectories.TEACHINGGSI, EECS 442: Computer Vision, University of MichiganWinter 21
Fall 20TA/RA, ARCH 660: Visionary Machines, University of MichiganFall 20SALIENT
COURSESUniversity of Michigan: Deep Learning for Computer Vision, Foundations of Computer
Vision, Ecological Approach to Perception, Advanced topics in Computer Vision, Applied
GPU Programming, Machine Learning
Delhi Technological University: Digital Image Processing, Computer Vision, Pattern
Recognition, Robotics & Object Tracking